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ABSTRACT

We investigate the properties of low frequency (u34'L3 c )
transverse waves in a two-fluid solar wind having a radial
magnetic field and radial streaming velocity. In order to
examine what effects this streaming medium has on the waves,
we decompose waves which are assumed to be linearly polarized
into left and right circularly polarized waves. We compute
analytic expressions valid to first order in JIUJkc for the
radial amplitude and phase dependence of these constituent
waves. We show that after travelling a distance Lr, these
waves have different amplitudes and phases. The former result
causes their superposition to become elliptical, rather than
linear. The latter causes the axis of the ellipse of polarization
to rotate throu'gh a well-defined angle. Analytic expressions
,re -ta nnJa for th-e ccentr:citv of the ellipsr and for the

in which the plane of polarization of a linear polarized
wave rotates, we denote the effect as generalized Faraday rotateon.
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CHAPTER 1

INTRODUCTION

Since the formulation of solar wind -theory (Parker, 1958)

much effort has been directed towards understanding perturbations

in the steady coronal expansion. Waves, discontinuities,

turbulence and shocks are observed perturbations in the steady

flow of the solar wind. This thesis concerns the-first of these

phenomena, waves. We undertake a theoretical investigation of

the properties of transverse field and plasma perturbations in

the constant radial flow of a two-fluid solar wind. Observationally,

the presence of such.transverse waves has been firmly demonstrated

(Belcher and Davis, 1971). As consequences of this study we

shall obtain agreement with previously investigated amplitude

~p '7etcm of trr,-v-p-rse fluctua-ionR for a one-fluid solar

wind (Parker, 1965, Belcher, ].971), and obtain new results

predicting the generalized Faraday rotation of low frequency

transverse waves.

The expanding solar corona is a hydromagnetic configuration

which is stable with respect to small perturbations. With the

advent of direct observations of solar wind fluctuations

(Bridge et al., 1964, Coleman et al., 1963, 1966, 1968,

Neugebauer and Snyder, 1962, 1965, 1967, Siscoe. et al., 1968),

characteristic features contained in the plasma and field

fluctuations emerged. It seemed plausible (Davis, 1966) that

observed fluctuations could be caused by propagating Alfven or
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magnetoacoustic waves. A thorough study of spectral and cross-

spectral analysis of Mariner 2 plasma and field data by Coleman

(1967f 1968),' indicated that outwardly propagating Alfven waves

could account for many of the observed fluctuations. This

statistical approach neither gave patterns of occurence nor

explicit examples of wave forms, however. Unti and Neugebauer

(1968) were the first to identify a specific example of a

quasi-periodic Alfven wave. Belcher, Davis, and Smith (1969),

in a preliminary analysis of Mariner 5 plasma and field data

identified outwardly propagating Alfven waves as frequently

occuring phenomena, although these waves were mainly non-

sinusoidal and aperiodic.

A comprehensive study of Alfven waves (Belcher et al., 1969,

Belcher and Davis, 1971), suggests that the outwardly propagating

waves observed primarily in high velocity streams and on thdir

trailing edge a.re remnants of 'a broad spectrum of MHD waves

generated inside the Alfvenic critical point (Hartle and

Sturrock, 1968). This supports Parker's idea (1965) that one

can listen-at 1 A.U. to the noise generated at the Sun. Hollweg

(1972) suggests that super-granulation patterns generate Alfvenic

disturbances which propagate upwards through the photosphere.

Parker's suggestion (1965) that waves d6 work on the wind led

Belcher (1971) and Alazakri and Couturier (1971) to reformulate

the basic solar wind problem from the point of view of a new

energy source - Alfven waves. These waves propagate in and

are convected by the streaming medium and could play a principal



role in the fasts hot, tenuous winds that sometimes come from

the active Sun.. They could accelerate the wind and heat it

upon dissipation. It should be'noted that the Alfven mode is

the only hydromagnetic wave which is not strongly Landau damped

(Barnes, 1966, 1968), so that the longer wavelengths observed

at 1 A.U. are most probably of solar origin.

Other causes of fluctuating phenomena may be due to the

differing temperatures in coronal regions. Different

temperatures in regions on the Sun lead to different expansion

rates for coronal gases. The colder regions expand more slowly

than the hotter ones, so that hot gas may eventually overtake

cool gas. This leads to compression, discontinuities, and

wave generation as these two streams interact (Parker, 1963,

Sarahbai, 1963, Lee, 1971). The large velocity difference

provides the energy to drive wave fluctuations (Jocippi ana

Davis, 1969), although the predominance of purely outwardly

propagating Ai:fven waves is not adequately explained in this

manner (Belcher and Davis, 1971). Coleman (1968) suggests that

the large scale shear resulting from varying wind velocity

leads to turbulence in which the energy of the shear cascades

down through a hierarchy of eddies' to some very small scale at

which dissipation converts the fluid motion into heat. The

interested reader may pursue further discussion of these two

differing points of view in Parker (1969). Blast waves from

sudden coronal conmmencements generate waves (Parker, 1963) as
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do finite amplitude Alfven waves when they are incident upon

shock waves (Scholer and Belcher, 1971).

The present study investigates the problem of low frequency

transverse wave propagation in a solar wind having two species,

protons and electrons. We seek the wave amplitude dependence

as a function of distance from a chosen. reference level. We do

not inquire about the mechanism .of wave production, but rather

assume that at the reference level ro we have linearly polarized

waves of a given amplitude. We assume that beyond ro there is

neither subsequent wave generation nor wave damping into thermal

motion. As these waves propagate in and are convected by the

two-component solar wind, we examine what effects the streaming

medium has on their properties. We decompose the 'linearly

nol.?;7z.cr wav.7es into left and right handed circularly polarized

waves, and focus our attention on the properties of these

constituent waves. We shall see that as the right and left

'circularly polarized waves propagate in and are convected to

·larger r, their respective amplitude and phases behave in different

ways. Thus after a distance Ar, we no longer have linear

polarization, but, rather elliptical polarization with the axis

of the ellipse of polarization turn'ed through a well-defined a1ngle.

Analytic expressions will be obtained for the amplitude and phase

dependence of the right and left handed waves, and for the angle

of rotation. In analogy with regular Faraday rotation, in which

there is no such amplitude change, we denote the effect as

generalized Faraday rotation.



CHAPTER 2

THE DIFFERENTIAL EQUATION FOR ELLIPTICALLY

POLARIZED WAVES IN A TWO-FLUID PLASMA

For a two-component plasma with magnetic field B, the

relevant equations of motion and the appropriate Maxwell's

equations in the presence of a spherically. symmetric gravitational

potential ~ are

(1)

V)p 4 A 9 wfarV \ =O (2)

c% -t- - -- -

(5)

(6)

(7)

wher e 

(8)

and 9

(9)
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and

V p- no Tp jPep - -lTe (10)

In the above equations the supscript p (e) refers to protons

(electrons) and n refers to the number density. We assume that

there are no collisions between species and that the respective

pressures are scalar quantities. In the one-fluid MHD limit,

these equations reduce to the: set used by Belcher (1971) in

solving for the WKB wave amplitudes.

We assume that our plasma parameters B, V, and E are pertur-

bed due to the. presence of short wavelength transverse waves.

Denoting these perturbations by ZB, IV, and SE we further assume

that they are superimposed upon background conditions of radial

Stfea'M-ls aed . r-diiab m n1e te"c ;,e1d We also a 5 rie }:hst. eke

propagation vector .of these disturbances is parallel to the back-

.ground field.., It will be shown that thb.se waves locally obey the

standard two-fluid dispersion relation for transverse waves. In

analogy with the one-fluid case (Belcher, 1971), we will solve

for the wave amplitudes as a function of r using the WKB approx-

imation that wave quantities vary on a scale much smaller than

the scale height. We confine our analysis to the equatorial

plane of a spherical coordinate system.. Consistent with other

workers -(Yeh, 19'70,-----artle -and -St-urrock,-- 1968 ) ,- we-assumc-equal. .

number density n =.n n to preserve charge neutrality of

the plasma and equal radial streaming velocity Vp = Ve V to
p e

preserve charge neutrality of the Sun.. The' radial component of

E arises due to a small. charge separation, insuring the absence
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of a net fow of charge from the Sun,

We thus/'look for wave solutions to (1) through (6) of the

form '

To solve for the first order WKB wave amplitudes, we work

with the transverse components of (1), (3) , (5), and (6). Since

Mp and \% have only radial components, our equations then

reduce to the following

_e
bti ? 4 r arr C? Ynfc(6>gdd \iS ) +mS_(12)

t is c i to ; e fin4 e (t follow v ariable
(16)

It is convenient to define the following variables

,,(1G)
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It will be seen (Chapter 4) that this choice associates the

upper (lower) sign with the left (right). handed polarized wave.

In this equivalent formulation, equations (12) through (15)

become

vt- \ a r 7 --; S \3 C = °- (17)

Xat J, tm ,' 'q 4i IA- e . (18)

~ . ..

" b" C -t(19)

c3 a Pi6 6œrwt (tUp -G9e 'a -tiL O (20)

wnere pc on ec eCt : 

cyclotron freqcuencies respectively.

The eikonal approximation (Weinberg, 1962) consists in assum-

ing that the spatial dependence of the quantities %;, %W ,%

and %- is contained in a common factor exp(i S (r)). We thus

set

1~~~~~~~ ~(21)st siM";- tjE3- _$>8 C(S( (21)

with , , ad be-'deteriined-D- i-ng -

* - d S~~ (VB (22)

and inserting (21) into (17) through (20) we obtain
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N .4
.... ; iu \ (23)

eCe ie\~ t-t· e & ,=O (24)

+cK SE, I;C E _ WD ;EO _ O (25)

Let the scale length over which the unperturbed quantities vary

be h, which is of the order r. Then comparing the terms VCoI Ir
and ~{<'9 in (23) and (24) we note that the ratio is ~+-L/

where >= 2T/I(| - . We assume that h ~x so that this ratio is

much less than 1. Hence we may drop \; if' with respect

to Swg i%1 in order to obtain an equ-.,t-ion correct to zeroth

order in / h . Similar reasoning in (25) and (26) suggests

that we drop 4Lic-QEJ V and 4_ic% IV respectively. We thus obtain

the following set of equations correct to zeroth order in -|[V

(-lX ' _e O (27)

C-;13t~iK J ;0iu3,,)Gu Jr ;t\) a\ )e s_ O
ufflC. VYuc, (28)

.% 4
k c'I - (30)
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For a two-component- plasma. the .Alfven velocity is

T4gT, aVphlc >+f 7(31)

and the plasma frequency is

i3 
M

e M4e FEZ ( in + P (32)

In order to obtain a dispersion relation for < in a two-fluid

plasma, we set the determinant of (27) through (30) equal to

zero. Using (32) we obtain

From the definition of the index of refraction we obtain

We note that there are two resonances occuring at u3--\<j= L3C

and at u5-l<-< ~ec . This can be easily understood if we tralns-

form to the frame of reference moving at the non-relativistic

wind velocity V. The frequency measured in this frame is the

Doppler shifted frequency uD-'[<U-U. This immediately follows

from the Lorentz transformation in the non-relativistic limit.

The resonances occur when the electric field vector of the

right (left) po].xiztiJd wvtOLa L es wzIt- L.Ih same velocii as

the protons (electrons) in their cyclotron rotation about B.

We can further exploit the elegance of the Lorentz trans-

formation (Olbert., .. private communication) to obtain agr'e'emi: i

between (33) and conventional two-fluid dispersion relations

(Van Kampen and, Felderhoff 1967) by the: substitution-\(-'. .
* j S
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Furthermore in the frame co-moving with the wind velocity V it

is a straightforward matter to obtain a)>O (\-) from (33)

under the assumption that the phase velocity is much smaller

than the' speed of .light c. This anticipates the results (58)

and (66) in Chapter 3 and., for continuity, will not be given here.

Having solved for the dispersion relation correct to zeroth

order in - we now seek to solve for our unknown amplitudes

t- , and . To accomplish this we follow the method
I

of Weinberg (1962) which involves retaining terms to first order

in A in equations (17)through (20). We write

where ~WI9:1, and > satisfy (27) through (30), and sub-

stitute these expressions into (17) through (20). This process

yields

i.%?\, 4- Btt (36)

( ;N\ic" ·A i t ) (37)

VC
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; t2\. ·(39)

where we have used (27) through (30) in the above. The first

conclusion to be drawn is that , % f , and %~ are smaller

than i ~ , and %B , respectively, by a factor k-h, where

h is the scale length within which the quantities vary. For

example2 from (36) we group the %~;terms and compare them

with corresponding terms in %Vunder the assumption h r.

Doing this we obtain kI hV\ 2 Vp . Thus if k- h1l , that is

K/h << 1 we will be justified in dropping the %2 , ' ~ , and

%i to first order in A/h on the right hand sides of (36)

through (39). This is just the WKB appriximation. We now have

[,C: t b~t?! - .-,Bb,·;1 e ,_9~-~ae ,r.

<>;t';=_i>)'9e% W *' c~tw~m~k~~V~r.M- . (40)

(40)

iU324 ?c?~*- SE - ica Xiic s ~ '"

and ~Awe -i the quantities ad fromex A-C IC) S -- 1,\ 2 ~ 3

where we .have written the left hand sides of the equations in

matrix-like form in anticipation of the next step. In order t,..

obtain a single differential equation involving only S\] , %~,

awe elte the quantities %~%, % 'and %~ from
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(40) through (43) by using the technique of matrix symmetrization

of Weinberg (1962). Let us view (40) through (43) as a matrix

equation of the form

A \/
where

VI

(44)

- 9 i\-tS ;U3p

o

O

-iw+\l X\ --40c k -Iep_ lvr7C e \fle

.t' C< -\u /

O O 

(4 5')o . . -~;c (45)

C' , klcc sC

A

' O

U

a v

O

O 'I

=B A 

t
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Since A is not symrmetrict we premultiply both sides of our

equation by a'nother matrix C, so that the resultant matrix

·C A is ,symmetric, Trial and error has shown that we should

choose C in the following manner:

4~rr~ nmu O o -
(46)

° o o i" }il 
We thus obtain the following matrix equation

/ n(--ioVI\, 0'Wi -;4rrmpel -4 r1t\

4rr(\!+iuKlecj) \i 4TA 4Tvle.

CV O -mi ar· ''e 0 

, () j+ 4-I C '--i\¢ -i / V

(47)

I , -with A!. = A'.
/\Kxi~~~~~~~~~ 2 ~ -. (48)

and B!. = BW.iJ~ J i$



1s.

Preinultiplying (48) by the transposed vector

'X T (S FA St It , A (49)

yields

X A - -CI = XL e XI(50)

Taking the transpose of both sides gives

XT At , _ -XT (51)

But the left hand side of (51) is zero by virtue of equations

( t7) h.5th-ueth C30), leev:ihg as w.i-! b .ing16 dif0ere-tal ejrA,\tia r

in the unknown amplitudes , %~% , l, and . For sim-

plicity of notation we now drop the subscript 1 on our unknown

amplitudes. Performing the indicated matrix multiplications

on the right hand side of (51) using (47) and (49), yields

o= -4- T'lt\ (N -e * we

-\ .E .- 

~~ ~~%
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We thus obtain a single differential equation involving the unknown
J/

amplitudes S\Jp ' , , and SE and their derivatives. In

order-t o- solve it, we must relate.the amplitudes to one another.

This is accomplished by choosing Q2 as the independent amplitude

in (27) through (30) and expressing the other amplitudes in terms

of it. This process yields the following relationships between

the amplitudes

A-

-aU - -

- ~ ( X---I )(53)

ACC)

By substituting (53) through (55) into (52) and using the dispersion

we can sol've (52) analytically to first 6rder in ' for s-hort -

wave Ilesngutih'! OS.I.'. oftL 35dA 1U±J Unto (JJ.. l.1. .... .,.
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CHAPTER 3

SOLUTIONS FOR THE WKB WAVE AMPLITUDES-

TO FIRST ORDER. IN ICSNc

In the previous chapter we obtained the dispersion

relation (34) for K in a two-fluid plasma correct to zeroth

order in y . From this dispersion relation we may derive

the phase speed of the wave to terms of zeroth order in UjltO c

Recalling (31) and (32) we may easily establish the identity

b"~p·UC~~eC bJWp A l (56)

From (33) we have

W C. .~e(57)

Using (56) and neglecting terms of order and )
C,

where\ - we obtain
pJse Jti

t (Y u$ . (58)

This expression correct to zero order in t|IWJp, agrees with that

of Belcher (1971) for the outward propagating wave. In order

to solve for the- unknown amplitudes "l ,. %i a'% 
%

4
2
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we substitute this phase relation into (53). through (55).

Since we desire, at first, only the relations correct to zero

order in u we neglect terms of order and smaller.

This pr6 cess yields the following relationships between the

amplitudes epr
ees

and

i'c4 · 4 C( +%X)% t- (60)

Substituting (59) and (60) into (52) and using conservation of

mass (eculations (2) and-(4) and the divergence free property

.c h:~._! '.d .;.= 1 ;;. *1 C - .O 1 ' d C

order in u3 for the unknown amplitude %ft. After some algebra

we obtain

(SQea 3A -(A t t(61)

and since A. _ ( this easily integrates to

)I (-62)

an expression first obtained for a one-fluid MHD plasma by

Parker (1965). Notice that this case is the most general.

because no assumptions about the behavior of V, a stipulation
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we will encounter later, were made. If we do specialize to

the case V = VO = constant we obtain

t(yA (=N% R ¢ v log r(63)

as our expression correct to zero order.in tu+'.. Notice' that

this latter assumption implies (by conservation Of mass) that

Having obtained this zero order expression, we now seek

to obtain an expression correct to first order in uJ for the

case that V = V0 = constant. To do this, we must obtain a

first order expression for the phase velocity '+ . In order

to obtain the phase velocity to first-order in we substitute

(5R! into (3.) This proce.ss yields

vi i \$ LJ(64
V±I- 4 2 \uc\oA c uec

where terms to second order in have been neglected. Since

me/mp = 1/1837< 1 we obtain

(65)

Notice that in the absence of stremuningi the phase velocity
U)3

is-modified to first order in-- to .
Lzr -

X1

`pV <, Q eo A
(66)

<= \It -,l\ \ MA :
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which is the standard expression to this orider in the two-fluid

model with no/streaming.

Since we now have a first order solution for the phase

velocity, we may compute the first order relations between the

unknown amplitudes s and S which we

originally saw to zero order in 'O in (53) through (55).

Denoting

-' C(v) = X -3 - X(67)

and using (65) we obtain

* 5\1~~t P lo~ Mt - (68)

--- _V3 u,( -L ant (69)

(70)

where we now restrict ourselves to frequencies L3~ pc such

that -: 1. In (68) we neglect terms of order A . In

addition, in (69) we neglect terms of order (m /m )C . Upone p -

substitution of (68) through .(70) into (52) we have (Appendix 1)

to first order in B



O = WC)~- @(3 1u a,(\2 [,\j )a S -

) T ;-22Q+(U-V,)(S8'-a. -p \P P(

t ; [ 9)(71)

t) 1 ~(71)

where we have neglected terms of order m e/m
p
. Now upon neglect

of terms o~ order V2/V2 when they are multiplied by OI LOc we

get

- -3 Va tV )· a(\ ) \ s (that-p \W 4tojM veiNc o0

so that

(72)

' (73)

Then after some algebra our differential equation becomes

(Appendix 2)

,(3__,_,' e1 V W \¥ 

Va0).r Vc r-
(74)

where, again, terms of order V2/V2 have been neglected if they
a

are multiplied byLD)/ c. This may be easily integrated using

(72), giving

r -o | (75)71 5

Let us define L·r r- sothatourfullxpress- or Let us define &'r = r-ro so that our full expr-ssianfor f (Tv''"'is

4-i : iS (.~~ ~~ ~

_ 3 C N '
* Lkw`u; :

(76)

21

C jl %L2 SoV,
dT~
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Labelling (63) by 0a we see that

TC~ -- , (77)

It is convenient (Olbert, private communication) to

introduce a length C defined by

X-a -e (78)

which, from (72), is just Cl/ . Then (77) becomes

C, CI (79)

Hence after propagating a distance 7. the left (right) handed

polarized waves will decay (grow) by a factor e . We shall

see that for the case of the solar wind, J< is extremely

" car- y s . i 1t.vc C i ti I'e tialIIiL ce sueoi - Lue _- sef L CA dI id 91 Jv

handed waves are nearly identical for all nL of interest.

However for the cases of astrophysical interest when LV is

extremely large, the length t and the variation in amplitude

will be important.

In sunnmary, this first order solution for the WKB wave

amplitudes has been derived under .the following main assumptions:

(1) V = Vo constant (< c

(2) Only terms to first order in are kept

(3) Terms of ord /2 neglected if multiplied2y (3)- Termsof order V /V neglected if mult{ipliedcby .
a 00~

It thus re..o. ..s a ..o " toi- n for ..'-.dlyC pro-

pagating low frequency transverse waves in the solar wind. Under
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the first assumption, it is valid more than halfway back to the

sun. The form of the solution predicts a new observable effect

in the solar wind and is the basis of the next chapter.
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CHAPTER 4

GENERALIZED FARADAY ROTATION OF LOW FREQUENCY

TRANSVERSE WAVES IN THE SOLAR WIND

We have just seen that, to first order in j/Lc, the wave

amplitudes of circularly polarized waves either grow or decay

after travelling distance '. .- We have also seen that

circularly polarized waves of right and left handedness propagate

at different phase velocities in the streaming two-fluid medium.

We will show that the former result causes linearly polarized

waves to become elliptical (with the eccentricity decreasing as

Q\C' increases), while the latter results 'in a rotation of

the plane of polarization. These two results are collectively

referred to by the term "generalized Faraday rotation".

For-clarity, the conventions used for denoting the handedness

of circularly polarized waves will be discussed. For.a wave with

electric field E and magnetic field. B travelling towards an

observer, the term "left handed" is applied if the 'electrid field

vector E rotates in a counterclockwise direction when viewied by

the observer. For clockwise rotation of E, the observer calls

the wave "right handed". This definition is the one used in

classical optics (Jackson, 1.962, Born and Wolf, 1964, Stone, 1963)

and is the one used in this thesis. The opposite convention is

commonly employed in plasma physics (Spitzer, 1962, Boyd and

Sanderson, 1969, Stix, 1962). Having chosen a spherical

coordinate system with origin at the sun, we must choose a
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combination of variables of the form 9 q \ to denote an

outwardly propagating left (right)-handed wave (Figure 1). *This

justifies the choice (16) for the amplitudes. With all conventions

explained, we next describe ordinary Faraday rotation.

In ordinary Faraday rotation of electromagnetic waves, the

difference in phase velocity between left and right circularly

polarized waves results in the pure rotation of the plane of

polarization. We define

(80)

so that

IC = it (us -r..r 1= 4-V (81)

and

. ,. I ,1 v
I I I I ')I

We note that the upper (lower), sign in (80) corresponds to the

left (right) handed wave under our chosen sign convention. In

accordance with classical definitions where one focuses. attention

upon the electric vector at, we rmake the correspondence

T-- - (83)

Ordinary Faraday rotation assumes that at some reference

level r. there exists a linearly polarized wave-'of the form

-- i E-co'E sJ - O - - (84)

which can be decorposed into a left; and rLight CircuilurLy pCiol-ariZ

wave of the form

E 
~'~

:l0 ti" 4 Ott ( (85)

. ..-- -. .
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where E is a real number representing the amnplitude,of the

circularly polarized wave and

-. ;- V' D (86)

where V(\ .' ' In (85) and the following, the appearance

of the exponential implies that we take the real part of the

expression when we talk about real oscillations. Notice that.

at r-=r we have

-E@- ECCost E-O (87)

as required by (84). After travelling a distance hr=r-r,0, (85)

becomes

where we have decomposed S into terms synmletric and anti-

s* - I (S+ +S - J (s -s) . (89)

Then denoting

~4 >(s )- (90)

and

(tJF g(5_s~) '(91)

we have at P

fro-e hic h -( i fo.o: L (e.)a a)t+% (t92)

frmr hich .t fo1.lows from (8%! and (82) that

Ee 9J'R-~~ 'E.e s;MSVI (93)
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Since and oscillate in phase at r, they combine into a

linear oscillation which is rotated by an angle 4 with respect
to the .incident orientation. The phase of' c ommon oscillation

has been changed from its original value at r = ro in the

amount 4 (Sonmmerfeld, 1964). Hence in the ordinary Faraday

effect, when the left and the right handed waves arrive at r> r

they have equal amplitude but unequal phase. This results in a

pure rotation of the plane of polarization.

Let us investigate the consequences of allowing the' left

and right handed waves to have variable amplitudes when they

arrive at r as well as variable phases.. Instead of (83) we

will.make the correspondence

4*

This choice is made because we have chosen s) as the independent

amplitude (Chapter 2)o Let B1 be the unr'plitude and S be the

phase for the right-handed wave. Let B2 be.the amplitude and

SF be the phase for the left-handed wave. Hence the analytic

representations at r are the following

'B B Cos( S,3-- I) i.,(sV-I Lo; . right (95)

2 c oCOS-g 'O Ai Vk left

Notice that if we set the phases - and S equal to each other,,,;

at r, the superposition of the right and the left polarized

wave results in an elliptically polarized wave of semi-major

axis B1 + B2 and semi-minor axis B1 - 2BI' This is easily seen

in Figure 2 since the e components are always in phase and the
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components are always 1800 out of phase. Taking the

case that S- and t are unequal, we rewrite the left handed

wave from (95) as

a= gVc~os Cs~-£t+2ai) -2s~~n(s-urt dai} (96)

where

(97)

This process emphasizes the explicit phase difference S

between the two waves.

Combining the right and left handed waves at r yields

-~L B - B1Co-CosIs coB +Vos(C-@tas)
-~c; '~9 ~(98)

= (2\A-tCos w4 COS(5 -W+)

th~~~w~swt =ti -k-sI Lt ) -

=(gl3-\3 5 \ )i 9n w (S - cMt)

T (- 2? Slm/2<) cos Cs--~{)
Thus

(100)

with

~3= -~ si as' -(101)

CC)
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Hence

V-T Ia , (102)

We therefore define

*W ,, N' ·A , ·C~SvaL)(103)

and

(-%sh 2 G ) (% \ C(104)

so that

Tcam (. (105)

As bpfo-re t: :h-e resuvla.mt . 1tion is, 'ICI ea A F--r.rl zt >f C5)

and is expressed as

B-Ol -= tt°sSt-wt) - siz('i- itA (106)

Determining the position of o at S - -t = o
and %-Ut = l'/Q ~. gives us two conjugate radii of the ellipse

of oscillation traced out by (104) as a function of time

(Stone, 1963). By computing at these same two times,

we deduce that the direction of motion is froom L-E- , and

proceed's along the smaller of the two arcs. Since the right and

left handed waves are out of phase at r, we should expect-E that .

their superpositi-in 1ead.s Lo a wave rotatcd- by i- a-ngle - )

just as in ordinary Faraday rotation. The fact that they are

of different ampl:i.tude implies that the resultant wave is
0,.
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elliptical~ rather. than linear. (Figure 3),

In order to find the angle ~ which the semi-major axis of

the ellipse makes with the e axis, we seek to find Do and Eo,

the principal radii of the ellipse. Principal radii have the

property of lying on the symmetry axes and obey the equation

(107)

Let us choose a time to such that D will coincide-with Do and

E will coincide with Eo.

3-97bi(tdtbtj -- tS~-L Scw(S-@ + cst-,tW (108)

Using (107) we get

~~~W )V

Thus 

from which we may determine Y- WZo and hence solve for Do

and Eo by using (108). Then

(110)

.. e-,lor t (111)

'determines ' , the angular orientation. Using (101) and-- -.

(nr\ t is eCF. to shCryu tlat (4l.l-! i^e sQ t9

-teM a(s~-wt> -- Catle (-~lct I (112)
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and thus that

s o%o-&: = os (I-r) + % S;I {- r )
E, h s;n L-;) . EcoS C -X ) (113)

So ,-e co(-') s (-)

CB cos Qx) os ' nsiwXt vf

(114)'DI [2+ 5 co, }C

But since D o =F (B + B2) we obtain
1 We

COS = COS (115)

Thus we obtain the usual Faraday rotation'- =)C 2. which

we derived earlier. A shorter derivation of (115) (Lazarus,

pr LVc't COLt: Uil'uitil b 1 . ') 'I"l' t: 'l:_ 1 i .i.' ,

at r is given by

(116)

which reduces to (Appendix 3)

& -13lsz 
(117)

and simplifies using (78) and (79) to

, .... .,,

Usinq (65) and. (33) to compute S and S we form the phase

difference to get the following:
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neglecting terms of order GC . This integrates to

WO 3\jo 1
the leading term of which is

where a r = r r i s .dsacfrthrernelvlTe(121)

where 1r = r - r. is the distance from the reference level, Then

from (115), (120), and (118) we can predict the angular orienta-

tion and the eccentricity of the resultant elliptically polarized

wave as a function of r.

We have seen that when a linearly polarized wave propagates

in and is convected by a two-fluid solar wind, its constituent

right and left handed circularly polarized components undergo

amplitude and phase changes. Upon recombination of the right

and left handed wave, we find an elliptically polarized wave

whose semi-major axis is oriented at an angle . with respect to

the original orientation of the linearly polarized wave. We

shall now consider examples of this phenomenon for cases of

interest in the study of the solar wind and in astrophysicai

contexts.
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Chapter5 .

RESULTS AND CONCLUSIONS

Ordinary Faraday rotation concerns the pure rotation of

the plane of polarization of high frequency electromagnetic

Waves. We have shown that for low frequency waves (0 /43 1) in

a two-fluid solar wind, there exists both a rotation of the plane

of polarization and a gradual transition from linear to elliptical

polarization. Examples will be given to illustrate these con-

clusions.

From (118) we may easily obtain Figure 4 showing the vari-

ation of the eccentricity as a function of the dimensionless

ratio /r,/ . In-Figre m T. we showl7 representat-;iv- -el1ips.es for

the cases = 1, 0.9, and 1/e occuring at nr/7 = 0, 0.47, and

1.653 respectively. It must be remembered that for the variation

of V to be physically meaningful at large r we must not violate

the assumptions under which '(118) was derived. In particular we

must stay well away in frequency from the local proton cyclotron

frequency over the entire path length Ar, We have already

seen (Chapter 2) that a resonance occurs at this frequency when

one transforms to a frame of reference do-moving at the wind

velocity V. Furthermore, examination of the index of refraction

(34) shows that the right handed wave solution does not yield

real values for n beyond c,, (Van Kampen -and Felderhoff, 1967).

Since we assume B Dl/r and Uj EB, we are forced to examine
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waves of smaller and smaller frequency as we seek to obtain

results applicable at larger and larger r. We must also be

careful not to violate the WKB approximation that 1. We

have seen in (58) .that the zero order phase velocity is

U)t = MAMA from which it follows that (k
~
' %x

Under the assumption that V = Vo = constant it is easy to show

that Va- l/r. So if we are at large r, we must choose(,to be

very small in order not to violate W < 'l locally. Bu't_ this

means .)>%. In order not to violate the WKB approximation the

scale length h must be enormous.

With these thought in mind, let us examine the behavior of

the eccentricity for observed solar wind parameters. We choose

the reference level ro at 100 solar radii (0.46 A.U.) so that

-r, ..i ,,.. = 'V. - ',, _ o ',. - ,..L, __ .:-_:: Ve'

average solar wind velocities, we take this constant equal to

400 ]m-/sec (La. arus, 1969) . We take a field at the sun of 2

gauss, giving a reference level field of 20 gamma (1 gamma=

-5 0
105 gauss). We set = 100 km/sec, since the observed

a

Alfven velocity at 1 A.U. is approximately 50 km/sec (Belcher

and Davis, 1971). For a wave having an inertial period T of

1 minute, we obtain from X(78) that'X-14 6r -68 A.U. Computing

the distance 6r at which ~ decreases to.0.9 Fyields Ar 32A.U.

.-Hence for a reasonable solar wind case, the., wave remains

linearly polarized over a very large range of r (the orbit of

Pluto is 39 A.U.).

We can also examine thl-.e behavior of the angle of rotation

through which an initially linearly polarized wave turns as it
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propagates in and is convected by a two-f.luid solar wind. From

(121) we expect (from the Lo dependence) that waves of longer

inertial periods rotate less in the distance &r than waves of

shorter periods. In Figure *6 we show the angle of rotation ¢b

(determined from (115) and (120)) as a function of distance for

waves of inertial peqri6tds of 3,4,5,6,7,'and 8'minutes. The

same reference level parameters of Vo = 400 ]km/sec, Va = 100 km/sec

Bsun 2 gauss were chosen. A striking feature. in Figure 6 is the

linearity of the rotation with distance, as in ordinary Faraday

rotation in an infinite homogeneous medium. This can easily be

explained in physical terms upon realization of the relations

between plasma density and magnetic field -in our assumed model.

The radial background magnetic field varies as l/r2 , so that

2~l U3 2
r-, .- . ^. ,.. . 2 , .. ., , ,, , ';,-i-.ht. -- epec - -' ur-- o -

rotation to increase more rapidly than r, since L3 comes closer

and closer to 0c as r increases. But the assumption that V =

V, = constant constrains the density to fall off as 1/r2

that the Alfven velocity falls off as 1/r. Fortuitously, this

decrease in Va with r exactly balances the increase in /W/f

with r. This immediately follows by rewriting (121) in terms of

the local Alfven velocity and local cyclotron frequency. When

expressed in these parameters, the leading term-in the expression

f or_.the rotation -angle becomes z , The cyclotron

frequency varies as B, i.e. VUJ l/r Assuming V V, constant

2 2
*Alfv6n velocity also varies as l/r . Hence the ratio V a/Ut'is

constant and the rotation is predominantly linear with distance,



36

as in ordinary Faraday rotation. Figure 7 shows the dependence

of rotation angle (measured at 1 A.U.) upon the square of the

frequency measured in an inertial frame for the solar wind case

in Figure 6.

In summary these calculations predict -that linearly polarized

waves will gradually become elliptical as they propagate in and

are convected by a two-fluid solar wind. In addition they undergo

Faraday rotation so that the semi-major axis of the ellipse of

polarization is turned through a well-defined angle. In principle

this effect can be observed if at some distance ro there exists

linearly polarized waves which do not thereafter damp into

thermal motions as they travel in the two-fluid medium.
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Appendix 1

Equation (52) consists of 12 terms with' the upper (lower)

sign representing left (right) handed polarized. waves, Using

(68) and substituting into the first term of (52) yields

which becomes

-45C' (34vtp(l -G bi^ j4-gp - ( 84 } (I- C) er ) (A1.2)

Neglecting terms of order C. and G], yields

Using (68) in the second term of (52) yields

where terms of order h lhave been neglected.

Using (69) we notice that the substitution -- - - implies

~ ~ %¼C~-, . In addition, the third term of (52) may bo obtained

from the first by the substitution m -bm . Hence the third
term (52 ay be obained f

term .of (52) may be obtained from (Alo3) using these substitutions,



38.

The result is

'( iT

, (se4we P
4!TT Qp

-I'T" 

r-7 Aap ,:,-sr"Is4C .214 Tvj . J

f A:isn~~
(A1.5)

Similar considerations apply to the fourth term of (52) which

may be obtained from (A1.4) . The result is

(Al. 6)

The fifth and sixth terms are straightforward. The seventh term

follows easily 'from (70). The eighth and tentl -terms add to give

(Ai. 7)- 'c , . (\.nr- }' , C

using (70), The ninth term is

-~~ +;i2 a -( i4 Q24-ic r C3 " ± CO,+- 
AC b--%~ c

bY9 K 

where (70) has been used. Using (65) for the phase velocity

-Ics,

(Al 8)a s 1 r
arY

\r· A!~~ ( ~ -; C-)~-N.aF' · ,., ", b? .. (A.. 9)

7a5; b ar~

'--}6~
b0 

o, SI 2



39

But since

(Ai. 10 )
r\

we obtain

(SE.S B; \N -V~ ar - - S a J
( ' d v ) 6'

_ V
v-

(Ai. 11)
$-v A-Lk-) ~ S~

for the ninth term of (52). The eleventli term is easily shown

to be

(Al. 12)
__M .W)- S t
0 l-2-0

while the twelf th is

T- (E e j-
(A

Bo-th of these terms may be neglected since Ad
Cup a these terms and ng ters of like order ields

up all1 these terms and grouping terms of l.ike order yields

1.13)

ding

* .A-U jP ..

-- i,- 

- I 4 T I \ /\cl \) _ )7 I. 4-41'R \ ) '2.f- )
4-'C :\,p .ii

All' -v- � -- );- -a 2-
3 3~ 1 - 8, 3D

r

l - (.- 4 t Av

_\) v d s' W _
v .

W W-
S4s- 

c" (l (Sp A
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Bk \.,p ar -\-, 2a·ip Z).T a. 4 I e

. __
s

'

_

4vFe

44l, ,ie, (sa-
4.Tn nnKe3"

4LF

?1

+ a- p\sA -
'v k ~ 5 A - P -

T; auCs~_ _ 
, 7 L -a(M *R) -Z

A-S \t t 
"

r I - r
t r - ai k C- S' W - P Y '"I~b-f . v~·~ ~ ~ 

'a~' ~ Zr~~~~~~~~~~~~~~
(A1 i. 4)

as may easily be verified. The terms in curly brackets are of

u3
zero order in - while the others are of first order. Combining

the terms in curly brackets in (Alo14) we obtain

7. ¥%~- - - - --4Tv(ni At?-WM ,- , t!il\\n (Unt A- m l) R ('-

47 p -my _"

d- 'L ~ ~ ~ ~~Z .- I1 - \CZ j~T \1V ~3
. .. f , v - \k b 

.. ,ub (A1.15)

Combining hiie terms i1. square brac:kets in (Al. 14j we' obtain

aCEA_ kurl(mr·V!Tls,-T\\P'Q
4Sf\P a4Tlp

fC.I-

v -,

V-I
)

C) .

B'

. -VSW 3 Z±@
*-r

4 t

IL

-, ,~ 

!

i 221IpBy 
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4 -z hie

)t \)Z 3

P A I
el

tu Wl 7e-%k

(Al. 16)
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; _ \%k (M -"I

Simplifying (Al.15) yields

+ (N -\A) (S 0

-cu~~a a .p 

(A1. 17)

Neglecting terms of order me/ mip in (A1..16) yields
C P

/\J\. /-\A 

+(M-WZA(SB01- P + (A.8

(Al.18)

which is the first order term in (71). From conservation of mr-,;s

(the sum of (2). and (4)) we have

But Constant we get

1ut since V = V, = constant we get

.... ~ ,g

.s 4 - -,. A, 1 'n \ (A I 17\ -_ , ,
u~i_~j i X -C ; , - - , _ - * 

-P:)\g(\ N 1,4)' 3- (... ) j -

which is the zero order term in (71)

-4- 4
le

~-ai, (R9a~ -CT

. : I . r.
6 _- 

(Al. 19)

(A1. 20)

(Al. 21)

t S i,- 2 i, ;3 1 \ pk (F: b1

, I

'o a1%! , | 1 _ 11 ,k- 

i (1A

M- N9 MARA) 1\W '- S f~~a ssC

\ , i _ M ' ·. . i .

p , .- - _. ,

a S - ( (\ A-'J,
6 r

- a\1 (S~s~z
., yE 
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Appendix 2

Upon substitution of (73) into (71) we get

0- (z) drP - r (' vZy ar ·ze zw Zr 9~aBIFB s-

N_(s___' ) -- (S@ S \ ( -, I)
4 '! )- (\) _ `z) ( ) J ras ?~Vis ZJ

(A2. 1)

iwhich simplifies to

O oS-'Z.
a~

-jX (S - t(b
/-v 7- bJ f\r AZ ' 4-.

Using (Al120) in the above yields

V .r

3 N (-

2.~~~~~~~-
)14 ') _t 

-_ C9W -,^'a R E

7- \) 

\t r ~%%"q"_V 

pi -,\iJ I. l

?

(A2.2)

-~ (9 A)·(U-·L~R\I
V

Thus

0 (3 A ')t-. I

\7

(A2.3)

- 5 \x (%~
_-,-

Hence 

(t 3\ +Np 

(A2.4)

7- 1?' r 'C )

aJ (3\-¢01 - >(V\i,8)SX aC s;\f AcL- (\! \\)%Gi u3 ha`
'b 6v b~

-. \ Vs )

2 - -

'_, ... .
\)tW~ (A 2. 5)
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So

C- \ Jc)
r) CFl~ 3- \T)

- s- -1 - "' 

------ ----- I
, ' :,-\ C. ·- ' 

N P

1 . G 9
X~ L A (A2. 6)

Io
r 'l 6~

Neglecting terms of order G
%
2 yields

. I-c_ %y ' (A2.7)

which simplifies to

?,\e -', s; %\wi k1x

39-2t4M t, kj 
(A2.8)a 0t24SB

Using (72) we get

\Z. ( 4 (A2. 9)

and neglect:i ng terms o'[ order V2 / V if they are multiplied. by

0D/oU3c we obtain

I I u3 \1- 

which is (74)

- Cs\1 '3V )
,I (3 ·u J

Vv 6- lc
(A2. 10)

- ( l-3\
_ ("~J, 'sI .c-I- 1.. -

13 \11 r\Sp,

- (29g \,}
__ -Tv

ll-- 3 bC u (\1
-N

\1 -

q \t,
_ 

- (3 \-\ ),)

) (NkN-u)
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Appendix 3

Equation (115) may be derived with a minimum of algebra

by using the following method suggested by Dr, A.J.Lazarus:

Let us combine a left circularly polarized wave of the form

r = B
1

exp(iu t) .with a right circularly. polarized wave of the

form r B2 exp(-i t). For outwardly propagating waves, the

sence o-~ rotation agrees with the convention chosen in this

thesis. Let the right circularly polarized wave differ in phase

from thle left by 2)C. The resultant oscillation is expressed as

;w-t -; ~W~t -ty
r=ge % %e (A3.1)

\ -~ < I e +~) · -)c ) (A3.2)

Defininig i [t-l we obtain

-2-1 ) -0(e! -e (A3.3)

Now suppose that the phase difference -2 .tis zero. Then the re-

su lt.nlt osnci.llt 1 tion has t he for m

q = ~ 
~

, c(3S b{ '+t L (~i' 
~

6 /S't V tI (A3.4)
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which represents an elliptically polarized wave of semi-major

axis B + B2 and semi-iminor axis B1 B2 . The same result

was obtained in (95) and illustrated in Figure 2, When 2 } is

different from zero, (A3.3) represents an ellipse rotated by an

angle 1 with respect to the ~ axis, The same result was ob-

tained more laboriously in (98) through (115) and illustrated

in Figure 3.

We now focus our attention on the eccentricity. of the el-

liptically polarized wave. Equation (116) may be put in the form

_b~ _ ~~(A3.5)

From (113) we have

'fu, - L~cos -f s-, V'
-.. ..

.from which it is easy to show that

(A3 .7)

and hence that

%cos'' ) 
~

: - ) L' % ' 2C
......+ ila, ,. 7 · - (A3.8)

Now from (105) and (101) we have the followij.ng

4s,%?=
=
S -\- 4- l siP 2c2

z- : '~
L (slin' 3.9)
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which. simplifies to

{. _L (A3.10)

Notice that if B = B then p = 1, which means that the ellipse

degenerates into a straight line. In other words, we recover

the case of regular Faraday rotation of a linear polarized wave

rotated by an angle D6 with respect to the incident orientation.

From (79) we have

Tr

S (A3.11)
s - oRo~Eh O~i6 orDt~. -

The upper (lower) sign corresponds to the left (right) hand mode.

* L L -1 r3.

T01S CQS1- · (A3 .12)

And

'2. V S30Tu . trip -C (A3.13)

Thus fromn (A3 10)

(A3.14)
j oh~-

which is (1.18) in thl:e text.
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FIGURE CAPTIONS

Figure

1 Spherical coordinate system with origin at the Sun. An
outwardly propagating wave travelling towards an observer
i.s represented by the \w7ave vector ]r. The wav-e is "left-
handed'" since E rotates counterclockwise.

2 Representation of a right circularly polariized wavre (RCP)
of magnitude BL and a left circularly polarized wave of
magnitude B2 (with B 2 { B

1
) The waves are taken to be in

phase and are propagating out of the page. The ellipse
shown is the superposition of the t\4o above waves.

3 Superposition of right and left circularly polarized waves
\7hen they differ in phase. The rotation angle {b is shown
relative to the 6 axis. Conjugate radii D and E are
shown along with principle radii D. and E o. The wave is
propagating out of the page.

as a function of Lr/ .

5- Ellipses with varying magnitude of eccentricity ~ . F = 
correspQuds to the reference level where a linearly polari.ed
wave exists f - 0.9 corresponds to Lr/1C = 0.47. = l/e
corresponds to r/7 = 1r653.

6 Rotation angle '' as a function of distance for waves having
inertial periods of 3,4,5,6,7,and 8 minutes. The reference
level is indicated at 0,46 A.U.

7 Rotation angle jvobserved at 1 A.U. as a function of u
for the waves of Figure 6.
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